by Yue-Feng Bi*, Lu Jia, She-Po Shi, Xiao-Li Sun, Yuan-Yuan Chen, and Yang-Bing Zhang

School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China (phone/fax: +86-371-67781908; e-mail: 2000byf@sina.com)

Two new guaianolides (= guaianolactones), chrysanthguaianolactone A and B (1 and 2, resp.), and one new eudesmane sesquiterpene, chrysanthemdiol A (6), together with seven known sesquiterpenes were isolated from the flowers of *Chrysanthemum indicum* L. Their structures were elucidated on the basis of spectroscopic evidence.

Introduction. – *Chrysanthemum indicum* L. is a kind of traditional Chinese medicine with effects on clearing heat and detoxification and is widespread in China. The flowers of *Chrysanthemum indicum* L. have been used for the treatment of vertigo, hypertension, and virosis [1]. Previous phytochemical investigations led to the isolation of sesquiterpenes and flavonoids from the flowers of *C. indicum* L. [2–6].

Our pharmacological experiments revealed that the EtOH extracts of *C. indicum* indicated promising anti-HBV activities. Phytochemical investigation of the flowers of *C. indicum* led to the isolation of two new guaianolide (= guaianolactone) sesquiterpenes, named chrysanthguaianolactone A¹) (**1**) and chrysanthguaianolactone B¹) (**2**), and one new eudesmane sesquiterpene, named chrysanthemdiol A¹) (**6**), together with seven known sesquiterpenes. By comparison of their spectroscopic data with those reported, the known compounds were elucidated as $(3\alpha,6\alpha,8\alpha)$ -8-tigloyl-3,4-epoxyguai-1(10)-eno-12,6-lactone (**3**) [7], apressin (**4**) [8], athanadregeolid (**5**) [9], cumambrin A [10][11], $(3\beta,6\beta)$ -eudesm-4(14)-ene-3,5,6,11-tetrol [12], (+)-eudesm-4(14)-ene-11,13-diol [13][14], and cryptomeridiol [15]. Herein, we report the isolation and structural elucidation of the new compounds.

Results and Discussion. – Compound **1** was obtained as colorless crystals. The HR-ESI-MS showed an accurate $[M + Na]^+$ ion peak at m/z 385.1627, in accordance with an empirical molecular formula $C_{20}H_{26}O_6$ with seven degrees of unsaturation, which was supported by the ¹H- and ¹³C-NMR, and DEPT data. The IR spectrum of **1** showed the presence of OH groups (3563 cm⁻¹), C=O groups (1752 and 1718 cm⁻¹), and C=C bonds (1646 cm⁻¹). In the ¹H-NMR spectrum of **1**, the signals of two olefinic H-atoms (δ (H) 6.16–6.22 (m) and 5.28 (br. s)), three O-bearing CH groups (δ (H) 5.48 (br. d, J = 10.4 Hz), 3.95 (dd, J = 9.2 and 9.2 Hz), and 3.54 (br. s)), and five Me groups (δ (H) 2.02 (d, J = 7.2 Hz), 1.92 (s), 1.90 (s), 1.69 (s), and 1.29 (d, J = 6.8 Hz)) were observed (*Table 1*). The ¹³C-NMR spectrum of **1** showed the signals of a total of 20 C-atoms,

¹⁾ Trivial atom numbering; for systematic names, see Exper. Part.

^{© 2010} Verlag Helvetica Chimica Acta AG, Zürich

Fig. 1. Compounds 1-6, isolated from Chrysanthemum indicum L.

including two C=O groups (δ (C) 177.3 and 166.9), four olefinic C-atoms (δ (C) 140.6, 138.9, 126.9, and 123.5), five O-bearing C-atoms (δ (C) 80.7, 76.3, 72.4, 67.4, and 63.1), five Me groups (δ (C) 15.7, 16.0, 19.6, 20.5, and 24.7), one CH₂ group (δ (C) 42.1), and three CH groups (δ (C) 59.8, 53.0, and 40.1) (*Table 2*). Analysis of the ¹H- and ¹³C-NMR data as well as of the 2D-NMR spectra (¹H,¹H-COSY, HSOC, and HMBC) revealed the presence of an angeloyl (=(2Z)-2-methylbut-2-enoyl) moiety ($\delta(H)$ 2.02 $(d, J = 7.2 \text{ Hz}), 1.90 \text{ (br. s)}, \text{ and } 6.16 - 6.22 \text{ (m)}; \delta(\text{C}) 166.9, 140.6, 126.9, 16.0, \text{ and } 20.5)$ in 1. Based on the above evidence and the fact that some sesquiterpenoids were isolated from this genus, compound 1 was suggested to be a sesquite period with a guaiane-type skeleton. In the HMBC spectrum (Fig. 2), the long range correlation between H-C(8) $(\delta(H) 5.48$ (br. d, J = 10.4 Hz)) and C(1') $(\delta(C) 166.9)$ suggested that the angeloyl moiety was linked at C(8) (δ (C) 72.4). The C=C bond between C(9) and C(10) was assigned by the ¹H,¹H-COSY cross-peak between H–C(8) (δ (H) 5.48 (br. d, J= 10.4 Hz)) and H–C(9) (δ (H) 5.28 (br. s)), and it was also confirmed by the following HMBCs: Me(14) $(\delta(H) 1.92 (s))/C(10 (\delta(C) 138.9), Me(14) (\delta(H) 1.92 (s))/C(9) (\delta(C))$ 123.5), H-C(2) (δ (H) 1.86-1.88 (m))/C(10) (δ (C) 138.9). Seven degrees of unsaturation were attributed to two C=O groups, two C=C bonds, and three rings, the remaining degree of unsaturation indicating that 1 had one more ring. The presence of an O-bearing CH group at $\delta(C)$ 63.1 and a quaternary C-atom at $\delta(C)$ 67.4 suggested the occurrence of an oxirane ring in **1**. The position of the oxirane ring between C(3) $(\delta(C) 63.1)$ and C(4) $(\delta(C) 67.4)$ was established by the HMBCs between Me(15) $(\delta(H) 1.69(s))$ and C(3) $(\delta(C) 63.1)$ and C(4) $(\delta(C) 67.4)$. The OH group at C(1) $(\delta(C) 67.4)$ 80.7) was assigned by the ¹H,¹H-COSY cross-peak between CH₂(2) (δ (H) 2.46–2.50 and 1.86-1.88(2m)) and H-C(3)(3.54(br. s)), and further confirmed by the HMBC cross-peak between Me(14) (δ (H) 1.92 (s)) and C(1) (δ (C) 80.7). All the H- and C-

	14010 1.	11-11111 (OD OB) +00 IIII	T company to made (T	••••••••••••••••••••••••••••••••••••••		
	1	2	3	4	5	9
CH ₂ (1)	I	I	1	1	1	1.09 - 1.12 (m),
						$1.80 - 1.81 \ (m)$
$CH_2(2)$ or $H-C(2)$	2.46-2.50 (m),	2.73 (d, J = 17.6),	2.73 (d, J = 17.6),	$6.40 \ (d, J = 5.6)$	6.46 (d, J = 5.6)	$1.50-1.51 \ (m),$
	$1.86 - 1.88 \ (m)$	$2.30-2.51 \ (m)$	2.45-2.51 (m)			$1.68 - 1.69 \ (m)$
H-C(3)	$3.54 (\mathrm{br.}s)$	3.41 (br. s)	3.40 (br. s)	6.37 (d, J = 5.6)	6.37 (d, J = 5.6)	4.59 - 4.63 (m)
H-C(5)	2.46 (d, J = 9.2)	3.02 (d, J = 10.4)	$3.01 \ (d, J = 10.4)$	2.67 (d, J = 10.4)	2.67 (d, J = 10.4)	2.74 (t, J = 10.0)
$H-C(6)$ or $CH_2(6)$	3.95 (dd, J = 9.2, 9.2)	3.75(t, J = 10.4)	3.74 (t, J = 10.4)	3.78(t, J = 10.0)	3.80 (t, J = 10.0)	1.68 - 1.69 (m),
						$1.81 - 1.82 \ (m)$
H-C(7)	2.46-2.50 (m)	$2.26 \ (dd, J = 10.4, 10.8)$	2.26 (dd, J = 10.4, 10.8)	$3.43 - 3.49 \ (m)$	$3.47 - 3.50 \ (m)$	$1.88 - 1.91 \ (m)$
$H-C(8)$ or $CH_2(8)$	5.48 (br. d, J = 10.4)	$4.77 - 4.80 \ (m)$	$4.76 - 4.81 \ (m)$	2.30-2.38 (m),	2.41 - 2.42 (m),	1.49 - 1.50 (m),
				$1.94 - 2.02 \ (m)$	1.96 - 1.95 (m)	$1.87 - 1.88 \ (m)$
$H-C(9)$ or $CH_2(9)$	5.28 (br. s)	$2.30-2.51 \ (m),$	2.22 - 2.52 (m),	5.03 (t, J = 8.0)	5.14 (t, J = 8.0)	$0.92 \ (dd, J = 17.6)$
		2.12–2.18 (<i>m</i>)	2.11–2.15 (<i>m</i>)			$1.92 - 1.95 \ (m)$
H-C(11)	2.54-2.56(m)	2.45 - 2.56 (m)	2.45-2.52 (m)	I	I	I
Me(12)	I	I	I	I	I	1.14(s)
Me(13) or $CH_2(13)$	1.29 (d, J = 6.8)	1.30 (d, J = 6.4)	$1.31 \ (d, J = 6.4)$	5.45 (d, J = 3.2),	5.46 (d, J = 3.2),	1.14(s)
				(6.19 (d, J = 3.2))	6.19 (d, J = 3.2)	
Me(14) or $CH_2(14)$	1.92(s)	1.75(s)	1.75(s)	1.36(s)	1.36(s)	5.14 (br. s),
						4.76 (br. s)
Me(15)	1.69(s)	1.65(s)	1.65(s)	1.71(s)	1.72(s)	0.80(s)
H-C(3') or AcO	$6.16 - 6.22 \ (m)$	$6.14 - 6.19 \ (m)$	$6.87 - 6.92 \ (m)$	2.16(s)	6.17-6.21 (m)	I
Me(4′)	2.02 (d, J = 7.2)	2.02 (d, J = 7.2)	1.84 $(d, J = 7.2)$	I	2.04 (d, J = 7.2)	I
Me(5')	1.90 (br. s)	$1.90 \; (br. s)$	1.85 (br. <i>s</i>)	I	1.95 (br. s)	I

Table 1. ¹*H-NMR* (CDCl₃, 400 MHz) *Data of Compounds* 1-6. δ in ppm, *J* in Hz.

Helvetica Chimica Acta – Vol. 93 (2010)

No.	1	2	3	4	4 ^a)	5	6
C(1)	80.7 (s)	136.2 (s)	136.1 (s)	98.4 (s)	74.1 (s)	98.5 (s)	35.0 (<i>t</i>)
C(2)	42.1(t)	33.3(t)	33.3(t)	133.3(d)	133.3(d)	133.5(d)	33.0(t)
C(3)	63.1(d)	63.6(d)	63.6(d)	137.7(d)	137.6(d)	137.6(d)	69.4(d)
C(4)	67.4(s)	67.0(s)	67.0(s)	93.6 (s)	78.5(s)	93.6 (s)	153.9 (s)
C(5)	59.8 (d)	51.3(d)	51.3(d)	69.6(d)	41.7 (d)	69.6(d)	77.1 (s)
C(6)	76.3(d)	77.6(d)	77.6(d)	78.4(d)	72.1(d)	78.4(d)	32.2(d)
C(7)	53.0(d)	60.4(d)	60.5(d)	41.6(d)	69.7(d)	41.7(d)	44.1 (d)
C(8)	72.4(d)	70.8(d)	71.2(d)	30.2(t)	30.4(t)	30.3(t)	17.1(t)
C(9)	123.5(d)	42.0(t)	41.8(t)	71.9(d)	98.4(d)	71.5(d)	36.4(t)
C(10)	138.9(s)	128.9(s)	128.9(s)	73.9(s)	93.7 (s)	74.1(s)	37.5 (s)
C(11)	40.1(d)	40.9(d)	40.9(d)	139.1 (s)	139.3 (s)	169.4 (s)	73.9(s)
C(12)	177.3 (s)	177.2(s)	177.3(s)	169.4 (s)	169.2(s)	139.2 (s)	28.7(q)
C(13)	15.7(q)	15.1(q)	15.1(q)	120.0(t)	119.7(t)	120.0(t)	29.5(q)
C(14)	24.7(q)	22.2(q)	22.2(q)	21.6(q)	21.6(q)	21.9(q)	21.4(q)
C(15)	19.6(q)	19.0(q)	19.0(q)	13.7(q)	13.6(q)	13.7(q)	106.3(t)
C(1')	166.9(s)	166.7(s)	166.8(s)	170.2(s)	170.1(s)	166.8(s)	_
C(2')	126.9(s)	127.2(s)	128.3(s)	20.8(q)	20.8(q)	126.9(s)	_
C(3')	140.6(d)	140.0(d)	138.6(d)	_	_	140.4(d)	_
C(4')	20.5(q)	20.5(q)	14.6(q)	_	_	20.6(q)	-
C(5')	16.0(q)	15.9(q)	12.0(q)	-	-	16.0(q)	-

Table 2. ¹³C-NMR (CDCl₃, 100 MHz) Data of Compounds 1-6. δ in ppm.

^a) ¹³C-NMR Data assignment reported by Ognyanov [8].

Fig. 2. Selected HMBCs of compounds 1, 2, and 6

atoms were unambiguously assigned by the analysis of the ¹H- and ¹³C-NMR, ¹H,¹H-COSY, HSQC, and HMBC data (*Tables 1* and 2). The relative configuration of **1** was established by the NOESY correlations H-C(3)/Me(15)/H-C(6)/H-C(8)/H-C(11), suggesting that H-C(3), H-C(6), H-C(8), H-C(11), and Me(15) were β -oriented, and by the cross-peaks H-C(5)/H-C(7) and H-C(7)/Me(13), suggesting that H-C(5) and H-C(7) were α -oriented (*Fig. 3*). The downfield chemical shift of H-C(5) ($\delta(H)$ 2.46) supported the α -orientation of OH-C(1) [16]. Thus, the structure of **1** was elucidated as ($3\alpha, 6\alpha, 8\alpha$)-angeloyl-3,4-epoxy-1-hydroxyguai-9-eno-12,6-lactone, and named chrysanthguaianolactone A¹).

Fig. 3. Selected NOESY correlations of compounds 1, 2, and 6

Compound 2 was obtained as colorless crystals. Its molecular formula was elucidated as $C_{20}H_{26}O_5$ by HR-ESI-MS, which gave a quasi-molecular-ion peak at m/z 369.1679. The ¹H- and ¹³C-NMR spectra indicated the presence of an angeloyl moiety (δ (H) 2.02 (d, J = 7.2 Hz), 1.90 (s), and 6.14 – 6.19 (m); δ (C) 166.7, 140.0, 127.2, 15.9, and 20.5) in 2. Comparison of its NMR data with those of 1 suggested that compound 2 possessed a skeleton similar to that of 1. In compound 2, the disappearance of the quaternary C-atom at $\delta(C)$ 80.7 and the presence of one more CH₂ group (δ (H) 2.12–2.18 and 2.30–2.51 (2*m*); δ (C) 42.0) suggested that the C=C bond in **2** was most likely between C(1) and C(10), which was confirmed by the HMBC correlations Me(14) (δ (H) 1.75 (s)/C(1) (δ (C) 136.2), C(10) (δ (C) 128.9), and C(9) $(\delta(C)$ 42.0). The relative configuration was also established by the NOESY correlations H–C(3) (δ (H) 3.41 (br. s))/Me(15) (δ (H) 1.65 (s))/H–C(6) (δ (H) 3.75 $(t, J = 10.4 \text{ Hz})/\text{H} - \text{C}(8) (\delta(\text{H}) 4.77 - 4.80 (m))/\text{H} - \text{C}(11) (\delta(\text{H}) 2.45 - 2.56 (m)),$ suggesting that H-C(3), H-C(6), H-C(8), H-C(11), and Me(15) were β -oriented, and by the cross-peaks between H-C(5) (δ (H) 3.02 (d, J = 10.4 Hz)) and H-C(7) $(\delta(H) 2.26 (dd, J = 10.4 \text{ and } 10.8 \text{ Hz}))$, suggesting that H-C(5) and H-C(7) were aoriented (Fig. 3). The ¹H-NMR data of 2 were almost identical to those of the known isomer $(3\alpha, 6\alpha, 8\alpha)$ -3,4-epoxy-8-tigloylguai-1(10)-eno-12,6-lactone (3), except for the substituent at C(8) (δ (C) 42.0) (tigloyl = (2E)-2-methylbut-2-enoyl). In compound **2**, the Me groups of the substituent at C(8) appeared at more downfield chemical shifts $(\delta(C)$ 15.9 and 20.5) as compared to those of the Me groups of **3** ($\delta(C)$ 12.0 and 14.6; γ gauche effect when the two Me groups are cis-oriented). Thus, the structure of compound 2 was unambiguously elucidated as $(3\alpha, 6\alpha, 8\alpha)$ -8-angeloyl-3,4-epoxyguai-1(10)-eno-12,6-lactone, and named chrysanthguaianolactone B¹).

Compounds **3** and **5** were obtained as colorless crystals. These two compounds have been only reported by *Greger* and co-workers in 1986 [7], and *Bohlmann* and *Knoll* in 1979 [9], respectively, while the ¹³C-NMR data of **3** and **5** have never been reported. We now unambiguously assigned all the H- and C-atoms of **3** and **5** by analysis of the 1D- and 2D-NMR spectra including ¹H,¹H-COSY, HSQC, HMBC, and NOESY data (*Tables 1* and 2). *Bohlmann* and *Knoll* suggested that the endoperoxide moiety in **5** was β -oriented, while the NOESY correlations between Me(15), Me(14), and H–C(6) strongly suggested that the endoperoxide moiety in **5** was α -oriented, which well agreed with the result reported by *Ognyanov* and co-workers in 1981 [8]. In addition, *Ognyanov* and co-workers have also reported the isolation and structural elucidation of a new sesquiterpene named apressin from *Achillea depressa*, whose ¹H- and ¹³C-NMR data were completely identical to those of compound **4**. However, an unambiguous assignment of the NMR data of **4** revealed that the C-atom assignments reported in [8] were not completely accurate. Thus, we re-assigned all the H- and C-atoms of **4** on the basis of its NMR evidence including ¹H,¹H-COSY, HSQC, HMBC, and NOESY data (*Tables 1* and 2).

Compound 6 was obtained as colorless crystals. Its molecular formula C₁₅H₂₆O₃ was determined by HR-ESI-MS (m/z 277.1772 ($[M + Na]^+$)). The IR spectrum showed the existence of OH groups (3422 cm⁻¹) and a C=C bond (1649 cm⁻¹). The characteristic features of its ¹H- and ¹³C-NMR spectra were very similar to those of $(3\beta,6\beta)$ -eudesm-4(15)-ene-3,5,6,11-tetrol [12], suggesting that **6** was also an eudesmane-type sesquiterpene. The only difference between **6** and this tetrol was at C(6): for **6**, the C(6) was a CH₂ group without an OH group, which was confirmed by ¹H-NMR (δ (H) 1.81–1.82 $(m, H_{\beta}-C(6))$ and 1.68–1.69 $(m, H_{\alpha}-C(6))$ and ¹³C-NMR and DEPT ($\delta(C)$ 32.2). All the H- and C-atoms were unambiguously assigned by 1H,1H-COSY and HSQC, and confirmed by HMBC. The configuration of 6 was achieved by the analysis of its NOESY plot, the cross-peaks between Me(14) (δ (H) 0.80 (s)) and H_{ax}-C(2) (δ (H) 1.50-1.51(m), $H_{ax}-C(6)(\delta(H) 1.68-1.69(m))$, and $H_{ax}-C(8)(\delta(H) 1.49-1.50(m))$ suggesting a *trans*-ring junction, and the cross-peaks between OH-C(5) and H-C(3) $(\delta(H) 4.59 - 4.63 (m))$ and H - C(7) (1.88 - 1.91 (m)) revealing the equatorial positions of the substituents at C(3) (δ (C) 69.4) and C(7) (δ (C) 44.1). Thus, the structure of compound 6 was elucidated as (3β) -eudesm-4(14)-ene-3,5,11-triol, and named chrysanthemdiol A^1).

This work was supported by the *National Natural Science Foundation of China* (No. 30973872). The authors thank Prof. *Jian-Xun Kang, Wei-Guo Zhu, Yu Zhu*, and *Shao-Ming Wang* for their kind help with NMR, X-ray, and HR-ESI-MS assistance.

Experimental Part

General. TLC: silica gel GF_{254} (SiO₂; 10–40 µm, Qingdao Marine Chemical Factory, Qingdao, P. R. China); detection at 254 nm or by heating after spraying with 1.0% anisaldehyde/H₂SO₄ in EtOH. Column chromatography (CC): SiO₂ (200–300 mesh), Sephadex LH-20 (17-0090-02; Amersham Bioscience, Sweden) and ODS (prep. C_{18} , 12.5 nm, 55–105 µm; Waters). M.p.: WC-1 micro-melting-point apparatus; uncorrected. Optical rotations: Perkin-Elmer model 341 and Polar 3001. IR Spectra: PE-1710 FT-IR spetrometer; KBr pellets; $\tilde{\nu}$ in cm⁻¹. UV Spectra: Shimadzu-UV-260 spectrometer; λ_{max} (log ε) in nm. NMR Spectra: Bruker-DPX-400 NMR spectrometer; δ in ppm rel. to Me₄Si as internal standard, J in Hz. HR-ESI-MS: Waters-Q-Tof MS instrument; in m/z. X-Ray analysis: Rigaku-R-AXIS X-ray instrument.

Plant Material. The flowers of *Chrysanthemum indicum* L. were collected from Fangcheng County, Henan Province, P. R. China, in November 2008, and identified by Prof. *Ruo-Yong Liu* and *Cheng-Xue Pan* at the University of Zhengzhou. A voucher specimen (No. 2008012) was deposited with the Herbarium of the School of Pharmaceutical Science, University of Zhengzhou, P. R. China.

Extraction and Isolation. Air-dried flowers (5 kg) were extracted with 95% EtOH (3×61) by a tissue-smashing extractor, and the combined extracts were concentrated (yield 1.3 kg). A portion of the residue (300 g) was suspended in H₂O (51) and then partitioned successively with petroleum ether, petroleum ether ($60-90^\circ$)/AcOEt 1:1, and AcOEt (5×41). Each fraction was separately concentrated which afforded 10.0, 67.8, and 48.2 g of extract, resp. The petroleum ether/AcOEt 1:1 fraction (40 g) was subjected to CC (SiO₂, gradient of petroleum ether ($60-90^\circ$)/acetone): *Fractions A – J. Fr. C* (5.25 g) was

subjected to CC (*ODS*, 60% MeOH) and continuously purified by CC (SiO₂): **1** (8 mg; with petroleum ether/AcOEt 9:2), **2** (40 mg; with petroleum ether/CHCl₃/AcOEt 7:1:2), **3** (10 mg; with petroleum ether/AcOEt 7:2), **4** (35 mg; with petroleum ether/AcOEt 2:1), **5** (11 mg; with petroleum ether/acetone 3:1), and cumambrin A (12 mg; with petroleum ether/AcOEt 5:2). *Fr. D* (2.52 g) was applied to CC (*ODS*, 40% MeOH) and repeated CC (SiO₂): **6** (10 mg; with petroleum ether/AcOEt/MeOH 10:2:1), (3 β ,6 β)-eudesm-4(14)-ene-3,5,6,11-tetrol (35 mg, petroleum ether/AcOEt/MeOH 10:2:1), (+)-eudesm-4(14)-ene-11,13-diol (21 mg; with petroleum ether/acetone 3:2), and cryptomeridiol (45 mg; with petroleum ether/acetone 3:2).

Chrysanthguaianolactone A (=rel-(3R,3aS,4R,6aR,7aS,8aR,8bS,8cR)-2,3,3a,4,6a,7,7a,8a,8b,8c-Decahydro-6a-hydroxy-3,6,8a-trimethyl-2-oxooxireno[2,3]azuleno[4,5-b]furan-4-yl (2Z)-2-Methylbut-2enoate; 1): M.p. 164.0–165.0°. $[\alpha]_{25}^{25}$ = +17.3 (c =0.052, CHCl₃). IR: 3563, 1752, 1718, 1646. ¹H- and ¹³C-NMR (CDCl₃, 400 and 100 MHz, resp.): *Tables 1* and 2. HR-ESI-MS: 385.1627 ([*M*+Na]⁺, C₂₀H₂₆NaO₆⁺; calc. 385.1627).

Chrysanthguaianolactone B (=rel-(3R,3aS,4R,7aS,8aR,8bR,8cR)-2,3,3a,4,5,7,7a,8a,8b,8c-Decahydro-3,6,8a-trimethyl-2-oxooxireno[2,3]azuleno[4,5-b]furan-4-yl (2Z)-2-Methylbut-2-enoate; **2**): M.p. 164.0-165.0°. $[a]_{25}^{25}$ = +17.3 (*c* = 0.052, CHCl₃). IR: 3735, 1782, 1702, 1646. ¹H- and ¹³C-NMR (CDCl₃, 400 and 100 MHz, resp.): *Tables 1* and 2, resp. HR-ESI-MS: 365.1679 ([*M*+Na]⁺, C₂₀H₂₆NaO₅⁺; calc. 365.1680).

Chrysanthemdiol A (=rel-(2R,4aR,7S,8aR)-Octahydro-7-(1-hydroxy-1-methylethyl)-4a-methyl-1-methylenenaphthalene-2,8a(1H)-diol; 6): Colorless crystals. M.p. $386-388^{\circ}$. $[a]_{D}^{25} = +96$ (c = 0.15, acetone). IR: 3427, 3113, 1649. ¹H- and ¹³C-NMR (CDCl₃, 400 and 100 MHz, resp.): Tables 1 and 2, resp. HR-ESI-MS: 277.1772 ($[M + Na]^+$, $C_{15}H_{26}NaO_3^+$; calc. 277.1780).

REFERENCES

- Jiangsu New Medical College, 'Dictionary of Chinese Materia Medicine', Shanghai Science and Technology Press, P. R. China, 1993, p. 2144.
- [2] D.-Q. Yu, F.-Z. Xie, Acta Pharm. Sin. 1987, 22, 837.
- [3] M. Yoshikawa, T. Morikawa, I. Toguchida, S. Harima, H. Matsuda, Chem. Pharm. Bull. 2000, 48, 651.
- [4] M. Yoshikawa, T. Morikawa, T. Murakami, I. Toguchida, S. Harima, H. Matsuda, Chem. Pharm. Bull. 1999, 47, 340.
- [5] H. Matsuda, T. Morikawa, I. Toguchida, S. Harima, M. Yoshikawa, Chem. Pharm. Bull. 2002, 50, 972.
- [6] Y.-F. Bi, C.-X. Pan, P.-J. Wang, S.-S. Pei, Y.-B. Zhang, H.-M. Liu, Chin. Pharm. J. 2009, 44, 894.
- [7] J. Jakupovic, T. V. Chau-Thi, U. Warning, F. Bohlmann, H. Greger, Phytochemistry 1986, 25, 1663.
- [8] E. Tsankova, U. J. Kempe, T. Norin, I. Ognyanov, Phytochemistry 1981, 20, 1436.
- [9] F. Bohlmann, K.-H. Knoll, Phytochemistry 1979, 18, 995.
- [10] J. Romo, A. Romo de Vivar, E. Diaz, Tetrahedron 1968, 24, 5625.
- [11] N. D. Abdullaev, M. R. Yagudaev, V. A. Tarasov, S. Z. Kasymov, G. P. Sidyakin, *Khim. Prir. Soedin.* 1979, (3), 329; *Chem. Nat. Compd.* 1979, 15(3), 285.
- [12] X.-L. Wang, S.-L. Peng, J. Liang, K.-B. Yu, Acta Crystallogr., Sect. E: Struct. Rep. Online 2006, 62, 03570.
- [13] J. de Pascual Teresa, A. F. Barrero, A. San Feliciano, M. Grande, M. Medarde, *Tetrahedron Lett.* 1978, 19, 4141.
- [14] A. F. Barrero, M. M. Herrador, P. Arteaga, J. V. Catalán, Eur. J. Org. Chem. 2009, 3589.
- [15] M. Ando, K. Arai, K. Kikuchi, K. Isogai, J. Nat. Prod. 1994, 57, 1189.
- [16] A. A. Ahmed, S. A. El-Moghazy, M. A. El-Shanawany, H. F. Abdel-Ghani, J. Karchesy, G. Sturtz, K. Dalley, P. W. Paré, J. Nat. Prod. 2004, 67, 1705.

Received January 4, 2010